209 research outputs found

    Why Does a Kronecker Model Result in Misleading Capacity Estimates?

    Full text link
    Many recent works that study the performance of multi-input multi-output (MIMO) systems in practice assume a Kronecker model where the variances of the channel entries, upon decomposition on to the transmit and the receive eigen-bases, admit a separable form. Measurement campaigns, however, show that the Kronecker model results in poor estimates for capacity. Motivated by these observations, a channel model that does not impose a separable structure has been recently proposed and shown to fit the capacity of measured channels better. In this work, we show that this recently proposed modeling framework can be viewed as a natural consequence of channel decomposition on to its canonical coordinates, the transmit and/or the receive eigen-bases. Using tools from random matrix theory, we then establish the theoretical basis behind the Kronecker mismatch at the low- and the high-SNR extremes: 1) Sparsity of the dominant statistical degrees of freedom (DoF) in the true channel at the low-SNR extreme, and 2) Non-regularity of the sparsity structure (disparities in the distribution of the DoF across the rows and the columns) at the high-SNR extreme.Comment: 39 pages, 5 figures, under review with IEEE Trans. Inform. Theor

    Delay-Doppler Channel Estimation with Almost Linear Complexity

    Full text link
    A fundamental task in wireless communication is Channel Estimation: Compute the channel parameters a signal undergoes while traveling from a transmitter to a receiver. In the case of delay-Doppler channel, a widely used method is the Matched Filter algorithm. It uses a pseudo-random sequence of length N, and, in case of non-trivial relative velocity between transmitter and receiver, its computational complexity is O(N^{2}log(N)). In this paper we introduce a novel approach of designing sequences that allow faster channel estimation. Using group representation techniques we construct sequences, which enable us to introduce a new algorithm, called the flag method, that significantly improves the matched filter algorithm. The flag method finds the channel parameters in O(mNlog(N)) operations, for channel of sparsity m. We discuss applications of the flag method to GPS, radar system, and mobile communication as well.Comment: 11 page

    Quantized Multimode Precoding in Spatially Correlated Multi-Antenna Channels

    Full text link
    Multimode precoding, where the number of independent data-streams is adapted optimally, can be used to maximize the achievable throughput in multi-antenna communication systems. Motivated by standardization efforts embraced by the industry, the focus of this work is on systematic precoder design with realistic assumptions on the spatial correlation, channel state information (CSI) at the transmitter and the receiver, and implementation complexity. For spatial correlation of the channel matrix, we assume a general channel model, based on physical principles, that has been verified by many recent measurement campaigns. We also assume a coherent receiver and knowledge of the spatial statistics at the transmitter along with the presence of an ideal, low-rate feedback link from the receiver to the transmitter. The reverse link is used for codebook-index feedback and the goal of this work is to construct precoder codebooks, adaptable in response to the statistical information, such that the achievable throughput is significantly enhanced over that of a fixed, non-adaptive, i.i.d. codebook design. We illustrate how a codebook of semiunitary precoder matrices localized around some fixed center on the Grassmann manifold can be skewed in response to the spatial correlation via low-complexity maps that can rotate and scale submanifolds on the Grassmann manifold. The skewed codebook in combination with a lowcomplexity statistical power allocation scheme is then shown to bridge the gap in performance between a perfect CSI benchmark and an i.i.d. codebook design.Comment: 30 pages, 4 figures, Preprint to be submitted to IEEE Transactions on Signal Processin

    Improving Bandwidth Efficiency in E-band Communication Systems

    Get PDF
    The allocation of a large amount of bandwidth by regulating bodies in the 70/80 GHz band, i.e., the E-band, has opened up new potentials and challenges for providing affordable and reliable Gigabit per second wireless point-to-point links. This article first reviews the available bandwidth and licensing regulations in the E-band. Subsequently, different propagation models, e.g., the ITU-R and Cane models, are compared against measurement results and it is concluded that to meet specific availability requirements, E-band wireless systems may need to be designed with larger fade margins compared to microwave systems. A similar comparison is carried out between measurements and models for oscillator phase noise. It is confirmed that phase noise characteristics, that are neglected by the models used for narrowband systems, need to be taken into account for the wideband systems deployed in the E-band. Next, a new multi-input multi-output (MIMO) transceiver design, termed continuous aperture phased (CAP)-MIMO, is presented. Simulations show that CAP-MIMO enables E-band systems to achieve fiber-optic like throughputs. Finally, it is argued that full-duplex relaying can be used to greatly enhance the coverage of E-band systems without sacrificing throughput, thus, facilitating their application in establishing the backhaul of heterogeneous networks.Comment: 16 pages, 6 Figures, Journal paper. IEEE Communication Magazine 201
    • …
    corecore